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1 Introduction
There are many philosophical and physical arguments that discreteness is more suitable for
describing physics at small distances than continuity which arises only as a logical limit in
considering large collections of discrete structures.

Recently [1, 2] we showed that any relation on collection of discrete points taking values in
finite sets naturally has a structure of abstract simplicial complex — one of the mathematical
abstractions of locality. Thus we call collections of discrete finite-valued points discrete relations
on abstract simplicial complexes. Special cases of this construction are, e.g., systems of polynomial
equations over finite fields and cellular automata.

In this paper we study dependence of behavior of discrete dynamical systems on graphs —
one-dimensional simplicial complexes — on their symmetries. The study is based essentially on
our C program for a symmetry analysis of discrete systems. The program, among other things,
constructs and investigates phase portraits of discrete dynamical systems modulo groups of their
symmetries, searches dynamical systems possessing specific properties, e.g.,reversibility, computes
microcanonical partition functions and searches phase transitions in mesoscopic systems. Some
computational results and observations are presented. In particular, we explain formation of
moving soliton-like structures similar to “spaceships” in cellular automata.

2 Symmetries of Lattices and Functions on Lattices
Lattices. A space of discrete dynamical system will be called a lattice. Traditionally, the word
‘lattice’ is often applied to some regular system of separated points of a continuous metric space.
In many problems of applied mathematics and mathematical physics both metrical relations
between discrete points and existence of underlying continuous manifold do not matter. The
notion of ‘adjacency’ for pairs of points is essential only. All problems considered in the paper
are of this kind. Thus we define here a lattice as indirected k-regular graph Γ without loops and
multiple edges whose automorphism group Aut (Γ) acts transitively on the set of vertices V (Γ).
Sometimes we shall depict our lattices as embedded in some continuous spaces like spheres or
tori (in this case we can talk about ‘dimension’ of lattice). But such representations are not
significant in our context and used only for vizualization.

The lattices we are concerned in this paper are shown in Fig. 1. Note that the lattices marked
in Fig. 1 as “Graphene 6×4”, “Triangular 4×6” and “Square 5×5” can be closed by identifications
of opposite sides of rectangles in several different ways. Most natural identifications form regular
graphs embeddable in the torus and in the Klein bottle. Computation shows that the Klein bottle
arrangement (as well as others except for embeddable in the torus) leads to nonhomogeneous
lattices. For example, the hexagonal lattice “Graphene 6×4” embeddable in the Klein bottle has
a 16-element symmetry group and this group splits the set of vertices into two orbits of sizes 8
and 16. Since non-transitivity of points contradicts our usual notion of space (and our definition
of lattice), we shall not consider further such lattices.

It is interesting to note that the graph of hexahedron can be interpreted – as is clear from
Fig. 2 – either as 4-gonal lattice in sphere or as 6-gonal lattice in torus.

Computing Automorphisms. The automorphism group of graph with n vertices may have
up to n! elements. However, McKay’s algorithm [3], based on efficiently arranged search tree,
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Fig. 1: Examples of lattices
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Fig. 2: The same graph forms 4-gonal (6 tetragons) lattice in sphere S
2 and 6-gonal (4 hexagons)

lattice in torus T
2

determines the graph automorphisms by constructing small number of the group generators. This
number is bounded by n − 1, but usually it is much less.

In Sect. 3 we discuss the connection of formation of soliton-like structures in discrete systems
with symmetries of lattices. There we consider a concrete example of the system on square lattice.
So let us describe symmetries of N ×N square lattices in more detail. We assume that the lattice
has valency 4 (“von Neumann neighborhood”) or 8 (“Moore neighborhood”). We also assume that
the lattice is closed into discrete torus ZN × ZN , if N < ∞. Otherwise, the lattice is discrete
plane Z × Z. In both von Neumann and Moore cases the symmetry group, which we denote
by GN×N , is the same. The group has the structure of semidirect product of the subgroup of
translations T2 = ZN × ZN (we assume Z∞ = Z) and dihedral group D4

GN×N = T2
� D4, if N = 3, 5, 6, . . . ,∞. (1)

The dihedral group D4 is the semidirect product D4 = Z4 � Z2. Here Z4 is generated by 90o

rotation, and Z2 are reflections. The size of GN×N is

|GN×N | = 8N2, if N �= 4.

In the case N = 4 the size of the group becomes three times larger than expected

|G4×4| = 3 × 8 × 42 ≡ 384.

This anomaly results from additional Z3 symmetry in the group G4×4. Now the translation
subgroup T2 = Z4 ×Z4 is not normal and the structure of G4×4 differs essentially from (1). The
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algorithm implemented in the computer algebra system GAP [4] gives the following structure

G4×4 =

normal closure of T2

︷ ︸︸ ︷
((((Z2 ×D4) � Z2) � Z3) � Z2) �Z2. (2)

Functions on Lattices. To study the symmetry properties of a system on a lattice Γ, we
should consider action of the group Aut (Γ) on the space Σ = QΓ of Q-valued functions on Γ,
where Q = {0, . . . , q − 1} is the set of values of lattice vertices. We shall call the elements of Σ
states or (later in Sect. 4) microstates.

The group Aut (Γ) acts non-transitively on the space Σ splitting this space into the disjoint
orbits of different sizes

Σ =
Norbits⋃

i=1

Oi .

The action of Aut (Γ) on Σ is defined by (gϕ) (x) = ϕ
(
g−1x

)
, where x ∈ V (Γ), ϕ (x) ∈ Σ, g ∈

Aut (Γ). Burnside’s lemma counts the total number of orbits in the state space Σ

Norbits =
1

|Aut (Γ)|
∑

g∈Aut(Γ)

qNg
cycles ,

where Ng
cycles is the number of cycles in the group element g.

The large symmetry group allows one to represent dynamics on the lattice in a more compact
form. For example, the automorphism group of (graph of) icosahedron, dodecahedron and
buckyball is S5, and the information about behavior of any dynamical system on these lattices
can be compressed nearly in proportion to |S5| = 120.

3 Deterministic Dynamical Systems
In this section we point out a general principle of evolution of any causal dynamical system
implied by its symmetry, explain formation of soliton-like structures, and consider some results
of computing with symmetric 3-valent cellular automata.

Universal Property of Deterministic Evolution Induced by Symmetry. The splitting
of the space Σ of functions on a lattice into the group orbits of different sizes imposes universal
restrictions on behavior of a deterministic dynamical system for any law that governs the
evolution of the system. Namely, dynamical trajectories can obviously go only in the direction
of non-decreasing sizes of orbits. In particular, periodic trajectories must lie within the orbits of
the same size. Conceptually this restriction is an analog of the second law of thermodynamics —
any isolated system may only lose information in its evolution.

Formation of Soliton-like Structures. After some lapse of time, the dynamics of finite
discrete system is governed by its symmetry group, that leads to appearance of soliton-like
structures. Let us clarify the matter. Obviously, the phase portraits of the systems under con-
sideration consist of attractors being limit cycles and/or isolated cycles (including limit and
isolated fixed points regarded as cycles of period one). Now let us consider the behavior of the
system which has come to a cycle, no matter whether the cycle is limit or isolated. The system
runs periodically over some sequence of equal size orbits. The same orbit may occur in the cycle
repeatedly. For example, the isolated cycle of period 6 in Fig. 4 — where a typical phase portrait
modulo automorphisms is presented — passes through the sequence of orbits numbered1 as 0, 2,
4, 0, 2, 4, i.e., each orbit appears twice in the cycle.

1The program numbers orbits in the order of decreasing of their sizes and at equal sizes the lexicographic order
of lexicograhically minimal orbit representatives is used.
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Suppose a state ϕ(x) of the system running over a cycle belongs to ith orbit at some moment
t0: ϕ(x) ∈ Oi. At some other moment t the system appears again in the same orbit with the state
ϕt(x) = At0t (ϕ(x)) ∈ Oi. Clearly, the evolution operator At0t can be replaced by the action of
some group element gt0t ∈ Aut (Γ)

ϕt(x) = At0t (ϕ(x)) = ϕ
(
g−1
t0tx

)
. (3)

The element gt0t is determined uniquely modulo subgroup Aut (Γ;ϕ(x)) ⊆ Aut (Γ) fixing the state
ϕ(x). Equation (3) means that the initial cofiguration (shape) ϕ(x) is completely reproduced after
some movement in the space Γ. Such soliton-like structures are typical for cellular automata. They
are called “spaceships” in the cellular automata community.

Let us illustrate the group nature of such moving self-reproducing structures by the example
of “glider ” — one of the simplest spaceships of Conway’s automaton “Life”. This configuration
moves along the diagonal of a square lattice reproducing itself with one step diagonal shift after
four steps in time. If one considers only translations as a symmetry group of the lattice, then, as
it is clear from Fig. 3, ϕ5 is the first configuration lying in the same orbit with ϕ1, i.e., for the
translation group T2 glider is a cycle running over four orbits.

ϕ1 ϕ2 ϕ3 ϕ4 ϕ5

Fig. 3: Glider is cycle in four group orbits over translation group T2, but it is cycle in two orbits
over maximal symmetry group T2

� D4

Our program constructs the maximum possible automorphism group for any lattice. For an
N × N square toric lattice this group is the above mentioned GN×N (we assume N �= 4, see
formula (1) and subsequent discussion).

Now the glider is reproduced after two steps in time. As one can see from Fig. 3, ϕ3 is
obtained from ϕ1 and ϕ4 from ϕ2 by combinations of translations, 90o rotations and reflections.
Thus, the glider in torus (and in the discrete plane obtained from the torus as n → ∞) is a cycle
located in two orbits of maximal automorphism group.

Note also that a similar behavior is rather typical for continuous systems too. Many equations
of mathematical physics have solutions in the form of running wave ϕ (x − vt) = ϕ

(
g−1
t x

)
for

Galilei group). One can see also an analogy between “spaceships” of cellular automata and solitons
of KdV type equations. The soliton — like shape preserving the moving structures in cellular
automata — often arises for rather arbitrary initial data.

Cellular Automata with Symmetric Local Rules. As a specific class of discrete dynami-
cal systems, we consider ‘one-time-step’ cellular automata on k-valent lattices with local rules
symmetric with respect to all permutations of k outer vertices of the neighborhood. This
symmetry property is an immediate discrete analog of general local diffeomorphism invariance
of fundamental physical theories based on continuous space. The diffeomorphism group Diff(M)
of the manifold M is very special subgroup of the infinite symmetric group Sym(M) of the set
M .

As we demonstrated in [5], in the binary case, i.e., if the number of vertex values q = 2, the
automata with symmetric local rules are completely equivalent to generalized Conway’s “Game
of Life” automata [6] and, hence, their rules can be formulated in terms of “Birth”/“Survival”
lists.

Adopting the convention that the outer points and the root point of the neighborhood are
denoted x1, . . . , xk and xk+1, respectively, we can write a local rule determining one-time-step
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evolution of the root in the form

x′
k+1 = f (x1, . . . , xk, xk+1) . (4)

The total number of rules (4) symmetric with respect to permutations of points x1, . . . , xk is
equal to q(

k+q−1
q−1 )q. For the case of our interest (k = 3, q = 2) this number is 256.

It should be noted that the rules obtained from each other by permutation of q elements in
the set Q are equivalent since such permutation means nothing but renaming of values. Thus, we
can reduce the number of rules to consider. The reduced number can be counted via Burnside’s
lemma as a number of orbits of rules (4) under the action of the group Sq. The concrete expression
depends on the cyclic structure of elements of Sq. For the case q = 2 this gives the following
number of non-equivalent rules

Nrules = 22k+1 + 2k.

Thus, studying a 3-valent binary case, we have to consider 136 different rules.
Example of Phase Portrait. Cellular Automaton 86. As an example, let us consider

the rule 86 on hexahedron. The number 86 is the “little endian” representation of the bit string
01101010 containing values of x′

4 corresponding to ordered in some way combinations of values
of variables x1, x2, x3, x4 (assuming S3-symmetry for x1, x2, x3). The rule can also be represented
in the “Birth”/“Survival” notation as B123/S0, or as polynomial over the Galois field F2 (see [5])

x′
4 = x4 + σ3 + σ2 + σ1 ,

where σ1 = x1 + x2 + x3, σ2 = x1x2 + x1x3 + x2x3, σ3 = x1x2x3 are symmetric functions.
In Fig. 4 the group orbits are represented by circles. The ordinal numbers of orbits are placed
within these circles. The numbers over orbits and within cycles are sizes of the orbits (recall that
all orbits included in one cycle have the same size). The rational number p indicates the weight
of the corresponding element of phase portrait. In other words, p is a probability to be in an
isolated cycle or to be caught by an attractor at random choice of state: p = (size of basin)/(total
number of states). Here size of basin is a sum of sizes of the orbits involved in the structure.

p = 39
128 ≈ 0.30 Limit cycles6 16165

24

1

24

9

12

6

12

p = 9
32 ≈ 0.28 Isolated cycles24 0

24

0

2 4

p = 5
32 ≈ 0.16 Limit cycles8 14

10

12

11

13

8

p = 3
32 ≈ 0.09 Isolated cycles12 7

8

7

8

p = 3
32 ≈ 0.09 Isolated cycles24 33

p = 3
64 ≈ 0.05 Sink20

1

21

119

2

18

4 17

4

p = 3
128 ≈ 0.02 Isolated cycles6 1515

Fig. 4: Rule 86. Equivalence classes of trajectories on hexahedron. 36 of 45 cycles are “spaceships”

Note that most of cycles in Fig. 4 (36 of 45 or 80%) are “spaceships”. Other computed examples
also confirm that soliton-like moving structures are typical for cellular automata.

Of course, in the case of large lattices it is impractical to output full phase portraits (the
program easily computes tasks with up to hundreds thousands of different structures). But it is
not difficult to extract structures of interest, e.g., “spaceships” or “gardens of Eden”.
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Search for Reversibility. The program is able to select automata with the properties
specified at input. One of such important properties is reversibility.

In this connection we would like to mention recent works of G. ’t Hooft. One of the difficulties
of Quantum Gravity is a conflict between irreversibility of Gravity — information loss (dissi-
pation) at the black hole horizon — with reversibility and unitarity of the standard Quantum
Mechanics. In several papers of recent years (see, e.g., [7, 8]) ’t Hooft developed the approach
aiming to reconcile both theories. The approach is based on the following assumptions:

• physical systems have discrete degrees of freedom at tiny (Planck) distance scales;
• the states of these degrees of freedom form primordial basis of Hilbert space (with nonuni-

tary evolution);
• primordial states form equivalence classes: two states are equivalent if they evolve into the

same state after some lapse of time;
• the equivalence classes by construction form basis of Hilbert space with unitary evolution

described by time-reversible Schrödinger equation.
In our terminology this corresponds to transition to limit cycles: in a finite time of the evolution
the limit cycle becomes physically indistinguishable from a reversible isolated cycle — the system
“forgets” its pre-cycle history. Fig. 5 illustrates construction of unitary Hilbert space from
primordial.

e2

e3

e1

e5

e7e6

e4

Primordial basis
e1, e2, e3, e4, e5, e6, e7

E2

E3

E1

Equivalence classes
E1 = {e1, e5, e6, e7}
E2 = {e2}
E3 = {e3, e4}
form unitary basis

Fig. 5: Transition from primordial to unitary basis

This irreversibility can hardly be found experimentally (assuming, of course, that considered
models can be applied to physical reality). The system should probably spend time of order the
Planck one (≈ 10−44 sec) out of a cycle and potentially infinite time on the cycle. Nowadays, the
shortest experimentally fixed time is about 10−18 sec or 1026 Planck units only.

Applying our program to all 136 symmetric 3-valent automata, we get the following. There
are two rules trivially reversible on all lattices:

• 85 ∼ B0123/S ∼ x′
4 = x4 + 1,

• 170 ∼ B/S0123 ∼ x′
4 = x4.

Besides these uninteresting rules, there are 6 reversible rules on tetrahedron:
• 43 ∼ B0/S012 ∼ x′

4 = x4 (σ2 + σ1) + σ3 + σ2 + σ1 + 1,
• 51 ∼ B02/S02 ∼ x′

4 = σ1 + 1,
• 77 ∼ B013/S1 ∼ x′

4 = x4 (σ2 + σ1 + 1) + σ3 + σ2 + 1,
• 178 ∼ B2/S023 ∼ x′

4 = x4 (σ2 + σ1 + 1) + σ3 + σ2,
• 204 ∼ B13/S13 ∼ x′

4 = σ1,
• 212 ∼ B123/S3 ∼ x′

4 = x4 (σ2 + σ1) + σ3 + σ2 + σ1.
Two of the above rules, namely 51 and 204, are reversible on hexahedron too. There are no
nontrivial reversible rules on all other lattices from Fig. 1. Thus we may suppose that ’t Hooft’s
picture is typical for discrete dynamical systems.
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4 Lattice Models and Mesoscopic Systems
Statistical Mechanics. The state of the deterministic dynamical system at any point of time
is determined uniquely by previous states of the system. A Markov chain — for which transition
from any state to any other state is possible with some probability — is a typical example of a
non-deterministic dynamical system. In this section we apply a symmetry approach to the lattice
models in statistical mechanics. These models can be regarded as special instances of Markov
chains. Stationary distributions of these Markov chains are studied by the methods of statistical
mechanics.

The main tool of conventional statistical mechanics is the Gibbs
canonical ensemble – imaginary collection of identical systems placed in a huge thermostat with
temperature T . The statistical properties of canonical ensemble are encoded in the canonical
partition function

Z =
∑
σ∈Σ

e−Eσ/kBT . (5)

Here Σ is a set of microstates, Eσ is energy of microstate σ, kB is Boltzmann’s constant. The
canonical ensemble is an essentially asymptotic concept: its formulation is based on approxima-
tion called “thermodynamic limit”. For this reason, the canonical ensemble approach is applicable
only to large (strictly speaking, infinite) homogeneous systems.

Mesoscopy. Nowadays much attention is paid to study systems which are too large for
a detailed microscopic description but too small for essential features of their behavior to be
expressed in terms of classical thermodynamics. This discipline, often called mesoscopy, covers a
wide range of applications from nuclei, atomic clusters, nanotechnological structures to multi-star
systems [9, 10]. To study mesoscopic systems, one should use a more fundamental microcanonical
ensemble instead of a canonical one. A microcanonical ensemble is a collection of identical isolated
systems at fixed energy. Its definition does not include any approximating assumptions. In fact,
the only key assumption of a microcanonical ensemble is that all its microstates are equally
probable. This leads to the entropy formula

SE = kB ln ΩE , (6)

or, equivalently, to the microcanonical partition function

ΩE = eSE/kB . (7)

Here ΩE is the number of microstates at fixed energy E. In what follows we will omit Boltzmann’s
constant assuming kB = 1. Note that in the thermodynamic limit the microcanonical and
canonical descriptions are equivalent and the link between them is provided by the Laplace
transform. On the other hand, the mesoscopic systems demonstrate observable experimentally
and in computation peculiarities of behavior like heat flows from cold to hot, negative specific
heat or “convex intruders” in the entropy versus energy diagram, etc. These anomalous – from
the viewpoint of canonical thermostatistics – features have a natural explanation within micro-
canonical statistical mechanics [10].

Lattice Models. In this section we apply a symmetry analysis to study mesoscopic lattice
models. Our approach is based on exact enumeration of group orbits of microstates. Since
statistical studies are based essentially on different simplifying assumptions, it is important to
control these assumptions by exact computation, wherever possible. Moreover, we might hope
to reveal with the help of exact computation subtle details of behavior of the system under
consideration.

As an example, let us consider the Ising model. The model consists of spins placed on a
lattice. The set of vertex values is Q = {−1, 1} and the interaction Hamiltonian is given by

H = −J
∑

(i,j)

sisj − B
∑

i

si , (8)
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where si, sj ∈ Q; J is a coupling constant (J > 0 and J < 0 correspond to ferromagnetic and
antiferromagnetic cases, respectively); the first sum runs over all edges (i, j) of the lattice; B is
an external “magnetic” field. The second sum M =

∑
i

si is called the magnetization. To avoid

unnecessary technical details, we will consider only the case J > 0 (assuming J = 1) and B = 0
in what follows.

Since Hamiltonian and magnetization are constants on the group orbits, we can count
numbers of microstates corresponding to particular values of these functions – and hence compute
all needed statistical characteristics – simply by summation of sizes of appropriate orbits.

Phase Transitions. Needs of nanotechnological science and nuclear physics attract special
attention to phase transitions in finite systems. Unfortunately, classical thermodynamics and the
rigorous theory of critical phenomena in homogeneous infinite systems fails at the mesoscopic
level. Several approaches have been proposed to identify phase transitions in mesoscopic systems.
The most accepted one is search of “convex intruders” [11] in the entropy versus energy diagram.
In the standard thermodynamics there is a relation

∂2S

∂E2

∣∣∣∣
V

= − 1
T 2

1
CV

, (9)

where CV is the specific heat at a constant volume. It follows from (9) that ∂2S/∂E2
∣∣
V

< 0 and
hence the entropy versus energy diagram must be concave. Nevertheless, in mesoscopic systems
there might be intervals of energy where ∂2S/∂E2

∣∣
V

> 0. These intervals correspond to first-
order phase transitions and are called “convex intruders”. From the point of view of standard
thermodynamics one can say about the phenomenon of negative heat capacity.

s(
e)

e

Graphene 6×4
Square 5×5
Triangular 4×6

−3 −2 −1 0 1 2
0

0.2

0.4

0.6

0.8

Fig. 6: Specific microcanonical entropy s(e) = ln (ΩE) / |V (Γ)| vs. energy per vertex e =
E/ |V (Γ)| for the Ising model on 3-valent (dot line, 24 vertices), 4-valent (dash line, 25 vertices)
and 6-valent (solid line, 24 vertices) tori

A convex intruder can be found easily by computer for the discrete systems we discuss here.
Let us consider three adjacent values of energy Ei−1, Ei, Ei+1 and corresponding numbers of
microstates ΩEi−1,ΩEi ,ΩEi+1 . In our discrete case the ratio (Ei+1 − Ei) / (Ei − Ei−1) is always
rational number p/q and we can write the convexity condition for entropy in terms of numbers
of microstates as easily computed inequality

Ωp+q
Ei

< Ωp
Ei−1

Ωq
Ei+1

. (10)
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In Fig. 6 we show the entropy-energy diagrams for lattices of different valences, namely, for
3-, 4- and 6-valent tori. In Fig. 1 these lattices are marked as “Graphene 6×4”, “Square 5×5”
and “Triangular 4×6”, respectively. The diagram for 3-valent torus is symmetric with respect
to a change sign of energy and contains two pairs of adjacent convex intruders. One pair lies
in the e-interval [−1.25,−0.75] and another pair lies symmetrically in [0.75, 1.25]. The 4-valent
torus diagram contains two intersecting convex intruders in the intervals [−1.68,−1.36] and
[−1.36,−1.04]. The 6-valent torus diagram contains a whole cascade of 5 intersecting or adjacent
intruders. Their common interval is [−2.5,−0.5].

5 Summary
• A C program for the symmetry analysis of finite discrete dynamical systems has been

created.
• We pointed out that trajectories of any deterministic dynamical system always go in the

direction of nondecreasing sizes of group orbits. Cyclic trajectories run within orbits of the
same size.

• After finite time evolution operators of the dynamical system can be reduced to group
actions. This lead to formation of moving soliton-like structures — “spaceships” in the case
of cellular automata. Computer experiments show that “spaceships” are typical for cellular
automata.

• Computational results for cellular automata with symmetric local rules allow one to suppose
that reversibility is a rare property for discrete dynamical systems, and reversible systems
are trivial.

• We demonstrated capability of exact computing based on symmetries in search of phase
transitions for mesoscopic models in statistical mechanics.
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